

VIDYA BHAWAN, BALIKA VIDYAPITH

Shakti Utthan Ashram, Lakhisarai-811311(Bihar)

(Affiliated to CBSE up to +2 Level)

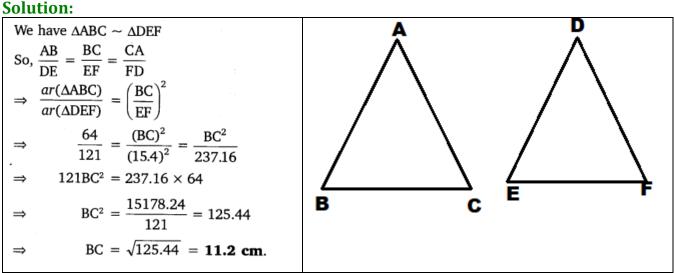
CLASS: X

SUB.: MATHS (NCERT BASED)

DATE: 16-09-2020

Ex 6.4

Q.1. Let $\triangle ABC \sim \triangle DEF$ and their areas be, respectively, 64 cm² and 121 cm². If EF = 15.4 cm, find BC.

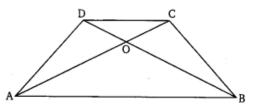


Q 2. Diagonals of a trapezium ABCD with AB || DC intersect each other at the point O.

If AB = 2 CD, find the ratio of the areas of triangles AOB and COD.

Solution: In the figure below, a trapezium ABCD is shown, in which AB || DC and AB =

2DC. Its diagonals interest each other at the point O.

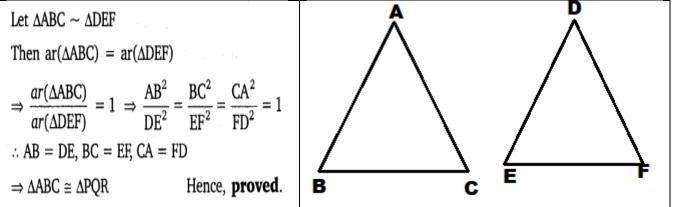


In $\triangle AOB$ and $\triangle COD$

 $\angle AOB = \angle COD$ [Vertically opposite angles] $\angle OAB = \angle OCD$ [Corresponding angles] $\therefore \Delta AOB \sim \Delta COD$ [By AA similarity] $\therefore \frac{ar(\Delta AOB)}{ar(\Delta COD)} = \frac{AB^2}{DC^2} = \frac{(2 \times DC)^2}{DC^2}$ $= \frac{4 \times DC^2}{DC^2} = \frac{4}{1}$ Hence, $ar(\Delta AOB) : ar(\Delta COD) = 4 : 1$ **Q** 3.In the given figure, ABC and DBC are two triangles on the same base BC. If AD intersects BC at 0, show that: $\frac{ar(ABC)}{ar(DBC)} = \frac{AO}{DO}$ Solution:

Draw AL \perp BC and DM \perp BC In \triangle ALO and \triangle DMO, we have \angle ALO = \angle DMO \angle AOL = \angle DOM (Vertically opposite angles] $\therefore \triangle$ ALO $\sim \triangle$ DMO $\Rightarrow \frac{AL}{DM} = \frac{AO}{DO}$ Now $\frac{ar(\triangle ABC)}{ar(\triangle DBC)} = \frac{\frac{1}{2} \times BC \times AL}{\frac{1}{2} \times BC \times DM}$ $= \frac{AL}{DM} = \frac{AO}{DO}$ (From (i)] Hence, **proved**.

Q 4.If the areas of two similar triangles are equal, prove that they are congruent. Solution:



5. D, E and F are respectively the mid-points of sides AB, BC and CA of \triangle ABC. Find the ratio of the areas of \triangle DEF and \triangle ABC. Solution:

The given figure shows a $\triangle ABC$, in which D, E and F are the midpoints of sides AB, BC and CA respectively. $DF = \frac{1}{2}BC$ [By Midpoint Theorem] $DE = \frac{1}{2}CA$ [By Midpoint Theorem] and EF = $\frac{1}{2}$ AB [By Midpoint Theorem] $\therefore \quad \frac{\mathrm{DF}}{\mathrm{BC}} = \frac{\mathrm{DE}}{\mathrm{CA}} = \frac{\mathrm{EF}}{\mathrm{AB}} = \frac{1}{2}$ $\Rightarrow \Delta DEF \sim \Delta ABC$ Now, $\frac{ar(\Delta \text{DEF})}{ar(\Delta \text{ABC})} = \frac{\text{DE}^2}{\text{AC}^2}$ $=\left(\frac{\mathrm{DE}}{\mathrm{AC}}\right)^2 = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$ Hence, the required ratio is 1:4

Q6.Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians. Solution:

Solution.	
Let AD and PS are the medians of \triangle ABC and \triangle PQR respectively. [Corresponding angles](i)	$\Rightarrow \frac{AB}{PQ} = \frac{BD}{QS}$ In $\triangle ABD$ and $\triangle PQS$,
A P	$\angle ABD = \angle PQS$ [From (i)] $\frac{AB}{PQ} = \frac{BD}{QS}$
$B \xrightarrow{D} C \qquad Q \xrightarrow{S} R$ Then $\Delta ABC \sim \Delta PQR$ [Given]	$\Rightarrow \Delta ABD \sim \Delta PQS \qquad [By SAS similarity]$ $\Rightarrow \frac{AB}{PQ} = \frac{AD}{PS} \qquad \dots (ii)$
$\Rightarrow \angle ABC = \angle PQR \qquad \Rightarrow \frac{AB}{PQ} = \frac{BC}{QR}$	Now $\frac{ar(\Delta ABC)}{ar(\Delta PQR)} = \frac{AB^2}{PQ^2}$ [By basic proportionality theorem]
$\Rightarrow \frac{AB}{PQ} = \frac{2BD}{2QS} \qquad [Median bisects the side]$	$\Rightarrow \frac{ar(\Delta ABC)}{ar(\Delta PQR)} = \frac{AD^2}{PS^2} $ [From (ii)] Hence, proved .

Q7.Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals. Solution:

Let ABCD be a square with side a. Then diagonal

$$AC = a\sqrt{2}$$
.

Since \triangle BCP and \triangle ACQ are equilateral triangles, so they are similar.

$$\therefore \frac{ar(\Delta BCP)}{ar(\Delta ACQ)} = \frac{BC^2}{AC^2} = \frac{a^2}{\left(a\sqrt{2}\right)^2} = \frac{1}{2} \qquad \dots (i)$$

 $\Rightarrow ar(\Delta BCP) = \frac{1}{2}ar(\Delta ACQ)$ Hence, **proved**.

DO YOUR SELF

Q8. Tick the correct answer and justify

(i) ABC and BDE are two equilateral triangles such that D is the mid-point of BC. Ratio of the areas of triangles ABC and BDE is

(a) 2:1 (b) 1:2 (c) 4:1 (d) 1:4

a√2

(ii) Sides of two similar triangles are in the ratio 4:9. Areas of these triangles are in the ratio

(a) 2:3 (b) 4:9 (c) 81:16 (d) 16:81